Новости
17 февраля, 12:20
Как рассчитать потери напряжения в кабеле
Вопрос качества передачи и получения электрической энергии во многом зависит от состояния оборудования, которое участвует в этом сложном технологическом процессе.

Поскольку в энергетике транспортируются огромные мощности на большие расстояния, то к характеристикам линий электропередач предъявляются повышенные требования.

Причем снижению потерь напряжения постоянно уделяется внимание не только на протяженных высоковольтных магистралях, но и во вторичных цепях, например, измерительных трансформаторов напряжения, как показано на фотографии.

Измерительный трансформатор напряжения 330 кВ

Кабели вторичных цепей ТН с каждой фазы собираются в одном месте - шкафу клеммной сборки. От этого распределительного устройства, расположенного на средней мачте крепления оборудования, цепи напряжения отдельным кабелем поступают на клеммник панели, расположенной в релейном зале.

Силовое первичное оборудование располагают на значительном удалении от защит и измерительных устройств, смонтированных на панелях. Протяжённость подобного кабеля достигает 300÷400 метров. Такие расстояния ведут к ощутимым потерям напряжения во внутренней схеме, что может серьёзно занизить метрологические характеристики измерительных приборов и системы в целом.

По этой причине качество преобразования первичной величины напряжения, например, 330 кВ во вторичное значение 100 вольт с необходимым классом точности 0,2 или 0,5 может не укладываться в допустимые пределы, требуемые для надежной работы измерительных комплексов и защит.

Чтобы исключить подобные ошибки на стадии эксплуатации все измерительные кабели подвергаются расчету на потери напряжения еще во время проектирования схемы электрического оборудования.

Как создаются потери напряжения

Кабель состоит из токопроводящих жил, каждая из которых окружена слоем диэлектрика. Вся конструкция помещена в герметичный диэлектрический корпус.

Принцип образования потерь напряжения в кабеле

Металлические проводники размещены довольно близко между собой, плотно прижаты защитной оболочкой. При большой длине магистрали они начинают работать как конденсатор с обкладками, создающими заряд. За счет его действия образуется емкостное сопротивление, являвшееся составной частью реактивного.

В результате преобразований на обмотках трансформаторов, реакторов и других элементах с индуктивностями мощность электрической энергии приобретает индуктивный характер. Резистивное сопротивление металла жил образует активную составляющую полного или комплексного сопротивления Zп каждой фазы.

Для работы под напряжением кабель подключается на нагрузку с полным комплексным сопротивлением Zн в каждой жиле.

Во время эксплуатации кабеля в трехфазной схеме при номинальном режиме нагрузки токи в фазах L1÷L3 симметричны, а в нейтральном проводе N протекает ток небаланса очень близкий к нулю.

Комплексное сопротивление проводников при протекании по ним тока вызывает падение и потери напряжения в кабеле, снижает его входную величину, а за счет реактивной составляющей еще и отклоняет по углу. Все это схематично показано на векторной диаграмме.

Векторная диаграмма падения и потери напряжения

На выходе кабеля действует напряжение U2, которое отклонено от вектора тока на угол φ и снижено на величину падения I∙z от входного значения U1. Другими словами, вектор падения напряжения в кабеле образован прохождением тока по комплексному сопротивлению проводника и равен значению геометрической разности входного и выходного векторов.

Для наглядности он показан увеличенным масштабом и обозначен отрезком ас или гипотенузой прямоугольного треугольника асk. Его катеты ak и kc обозначают падение напряжения на активной и реактивной составляющей сопротивления кабеля.

Мысленно продолжим направление вектора U2 до пересечения с линией окружности, образованной вектором U1 из центра в точке О. У нас появился вектор ab, с углом, повторяющим направлением U2 и длиной, равной арифметической разности величин U1-U2. Эта скалярная величина называется потерей напряжения.

Падение и потери напряжения в кабеле

Ее рассчитывают при создании проекта и замеряют в процессе эксплуатации кабеля для контроля сохранности его технических характеристик.

Принцип замера потерь напряжения в кабеле

Для проведения эксперимента необходимо выполнить два замера вольтметром на разных концах: входе и нагрузке. Поскольку разница между ними будет маленькая, то необходимо пользоваться высокоточным прибором желательно класса 0,2.

Принцип замера потерь напряжения в кабеле

Длина кабеля может большой, что потребует значительного времени на переход с одного места на другое. За этот период напряжение в сети способно измениться по разным причинам, что исказит конечный результат. Поэтому такие замеры принято выполнять одновременно с двух сторон, привлекать помощника со средствами связи и вторым измерительным высокоточным прибором.

Поскольку вольтметры измеряют действующую величину напряжения, то разница их показаний укажет на величину потерь, образованную арифметическим вычитанием модулей векторов на входе и выходе кабеля.

В качестве примера рассмотрим приведенные на верхних фотографиях цепи измерительных трансформаторов напряжения. Допустим, что линейная величина на входе кабеля замерена с точностью до десятых долей и равно 100,0 вольт, а на выходных клеммах, подключенных к нагрузке, она составила 99,5 вольта. Это значит, что потери напряжения определены как 100,0-99,5=0,5 V. При переводе в проценты они составили 0,5%.


Принцип расчета потерь напряжения

Вернёмся к векторной диаграмме векторов падения и потерь напряжения. Когда конструкция кабеля известна, то по удельному сопротивлению, толщине и длине металла токоведущей жилы вычисляется ее активное сопротивление.

Удельное реактивное сопротивление и длина позволяют определить полное реактивное сопротивление кабеля. Часто для расчета вполне достаточно взять справочник с таблицами и по марке кабеля с определёнными техническим характеристикам вычислить оба вида сопротивлений (активное и реактивное).

Зная два катета прямоугольного треугольника вычисляют гипотенузу - значение комплексного сопротивления.

Кабель создается для передачи тока номинальной величины. Умножив его численное значение на комплексное сопротивление узнаем величину падения напряжения - сторону ас. Аналогично вычисляются оба катета: ak (I∙R) и kс (I∙X).

Далее выполняются простые тригонометрические вычисления. В треугольнике ake определяется катет ae умножением I∙R на cos φ, а в Δ сkf - длина стороны cf (I∙X умножается на sin φ). Обращаем внимание, что отрезок cf равен длине отрезка ed, как противоположной стороне прямоугольника.

Складываем полученные длины ae и ed. Узнаем протяженность отрезка ad, которая чуть-чуть меньше, чем ab или потери напряжения. В силу малой величины bd этим значением проще пренебречь, чем пытаться его учитывать в расчетах, что практически всегда и делают.

Вот такой несложный алгоритм заложен в основу расчета двухжильного кабеля при питании его переменным синусоидальным током. Методика действует с небольшими корректировками и для цепей постоянного тока.

В трехфазных линиях, работающих по трех- или четырехжильным кабелям подобная методика расчета используется для каждой фазы. За счет этого она намного усложняется.

Как рассчитать потери напряжения в кабеле

Как выполняется расчет на практике

Времена, когда подобные расчеты производились вручную по формулам уже давно прошли. В проектных организациях давно используются специальные таблицы, графики и диаграммы, сведенные в технические справочники. Они избавляют от рутинной работы выполнения многочисленных математических операций и связанных с ними ошибок оператора.

В качестве примера можно привести методики, изложенные в общедоступных справочниках:

- Федорова по электроснабжению за 1986 год;
- по проектным работам для электроснабжения линий электропередач и электросетей под редакцией Большмана, Круповича и Самовера.

С массовым внедрением в нашу жизнь компьютеров стали разрабатываться программы расчета потерь напряжения, значительно облегчающие этот процесс. Они создаются как для выполнения сложных расчетов сетей электроснабжения проектными организациями, так и приближенной оценки предварительных результатов использования отдельного кабеля.

Владельцы электротехнических сайтов для этих целей размещают на своих ресурсах различные калькуляторы, которые позволяют быстро оценить возможности кабелей разных марок. Чтобы их найти достаточно в поиске Гугл ввести соответствующий запрос и выбрать один из сервисов.

В качестве примера рассмотрим работу калькулятора такого вида.

Онлайн калькулятор потерь напряжения в кабеле

Сделаем ему тестовое испытание и введем исходные данные в соответствующие поля:

  • переменный ток;

  • алюминий;

  • длина линии - 400 м;

  • сечение кабеля - 16 мм кв (скорее всего это не кабель, а одна жила);

  • расчет по мощности - 100 Вт;

  • количество фаз - 3;

  • напряжение сети - 100 вольт;

  • коэффициент мощности -0,92;

  • температура - 20 градусов.

Жмем кнопку «Расчет потерь напряжения в кабеле» и смотрим на итог работы сервиса.

Расчет калькулятором потерь напряжения

Получился результат довольно правдоподобный: 0,714 вольта или 0,714%.

Попробуем его перепроверить на другом сайте. Для этого заходим на конкурирующий сервис и вводим те же значения.

Проверочный расчет потерь напряжения в кабеле

В итоге получаем быстрый расчет.

Дублирующий расчет потерь напряжения

Теперь можно сравнить результаты, выполненные разными сервисами. 0,714-0,693373=0,021 вольта.

Точность расчета в обоих случаях вполне приемлема не только для быстрого анализа эксплуатационных характеристик кабеля, но и для других целей.

Метод сравнения работы двух онлайн сервисов показал их работоспособность и отсутствие ошибок ввода данных, которые может совершить человек по невнимательности.

Однако, выполнив подобный расчет успокаиваться рано. Надо сделать вывод о пригодности выбранного кабеля для работы при конкретных условиях эксплуатации. Для этого существуют технические требования к допустимым отклонениям напряжения от нормы.


Нормативные документы по отклонению напряжения от номинальной величины

В зависимости от государственной принадлежности пользуются одним из нижеперечисленных.

ТКП 45-4.04-149-2009 (РБ)

Документ действует на территории республики Беларусь. При получении результата обращайте внимание на пункт 9.23.

СП 31-110-2003 (РФ)

Действующие нормативы предусмотрены для применения на объектах электроснабжения Российской Федерации. Рассматривайте пункт 7.23.

ГОСТ 13109

Заменил 1 января 1999 года межгосударственный стандарт, ГОСТ 13109 от 1987 года. Анализируйте по пункту 5.3.2.

Способы снижения потерь в кабеле

Когда расчет потерь напряжения в кабеле выполнен и результат сравнен с требованиями нормативных документов, то можно сделать вывод о пригодности кабеля для работы.

Если результат показал, что погрешности завышены, то необходимо выбирать другой кабель или уточнять условия его эксплуатации. На практике часто встречается типичный случай, когда уже у работающего кабеля методами замеров выявили, что потери напряжения в нем превышают допустимые нормы. За счет этого качество электроснабжения объектов понижается.

В такой ситуации необходимо принимать дополнительные технические мероприятия, позволяющие уменьшить материальные затраты, необходимые на полную замену кабеля за счет:

1. ограничения протекающей нагрузки;

2. увеличения площади поперечного сечения токопроводящих жил;

3. уменьшения рабочей длины кабеля;

4. снижения температуры эксплуатации.

Влияние передаваемой по кабелю мощности на потери напряжения

Протекание тока по проводнику всегда сопровождается выделением тепла в нем, а нагрев сказывается на его проводимости. Когда через кабель передаются повышенные мощности, то они, создавая большую температуру, увеличивают потери напряжения.

Чтобы их уменьшить иногда вполне достаточно часть потребителей, получающих электроэнергию по кабелю, просто отключить и перезапитать по другой, обходной цепочке.

Этот способ приемлем для разветвленных схем с большим количеством потребителей и резервных магистралей для их подключения.

Увеличение площади сечения жилы кабеля

Этим методом часто пользуются для снижения потерь в цепях измерительных трансформаторов напряжения. Если подключить к работающему кабелю еще один и соединить их жилы параллельно, то токи раздвоятся и уменьшат нагрузку в каждом проводе. Потери напряжения тоже снижаются, а точность работы измерительной системы восстанавливается.

Пользуясь таким способом важно не забывать вносить изменения в исполнительную документацию и особенно схемы монтажа, которыми пользуется ремонтно-оперативный персонал для проведения периодических технических обслуживаний. Это предотвратит ошибки работников.

Уменьшение рабочей длины кабеля

Способ не типичный, но в отдельных случаях им можно воспользоваться. Дело в том, что схемы прокладки кабельных трасс на многих развитых предприятиях энергетики постоянно развиваются и совершенствуются применительно к доставляемому оборудованию.

За счет этого создаются возможности переложить кабель с сокращением его длины, что снизит в итоге потери напряжения.

Влияние температуры окружающей среды

Работа кабеля в помещениях с повышенным нагревом ведет к нарушению теплового баланса, увеличению погрешностей его технических характеристик. Прокладка по другим магистралям или применение слоя теплоизоляции может снизить потери напряжения.

Как правило, эффективно улучшить характеристики кабеля удается одним или несколькими способами при комплексном их применении. Поэтому, когда возникает подобная необходимость, важно просчитать все возможные пути решения проблемы и выбрать наиболее приемлемый вариант для местных условий.

Следует учитывать, что грамотное ведение электрического хозяйства требует постоянного анализа оперативной обстановки, предвидения вариантов развития событий, умения просчитывать различные ситуации. Эти качества выделяют хорошего электрика из общей массы обычных работников. 

По материалам: electrik.info