RSS
Вихревые токи и потери на гистерезис
Вихревые токи, или токи Фуко — вихревой индукционный объёмный электрический ток, возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.

Во время перемагничивания магнитных материалов переменным магнитным полем, часть энергии магнитного поля, участвующего в процессе перемагничивания, теряется. На единицу массы определенного магнитного материала в форме тепла рассеивается определенная часть мощности, которую называют «удельные магнитные потери».

Удельные магнитные потери включают в себя динамические потери, а также потери на гистерезис. К динамическим потерям относятся потери, вызываемые вихревыми токами (индуцируемыми в материале) и магнитной вязкостью (так называемое магнитное последействие). Потери же на магнитный гистерезис объясняются необратимыми перемещениями границ доменов.

Каждому магнитному материалу соответствует своя величина потерь на гистерезис, пропорциональная частоте перемагничивающего магнитного поля, а также площади гистерезисной петли данного материала.

Петля гистерезиса:

Для нахождения мощности потерь связанных с гистерезисом в единице массы (в Вт/кг) используется следующая формула:

Для снижения гистерезисных потерь, чаще всего прибегают к применению таких магнитных материалов, коэрцитивная сила которых мала, то есть материалов с тонкой петлей гистерезиса. Такой материал отжигают, чтобы снять напряжения внутренней структуры, уменьшить количество дислокаций и иных дефектов, а также укрупнить зерно.

Вихревые токи также вызывают необратимые потери. Они связаны с тем, что перемагничивающее магнитное поле индуцирует ток внутри перемагничиваемого материала. Потери вызываемые вихревыми токами, соответственно, зависят от электрического сопротивления перемагничиваемого материала и от конфигурации магнитопровода.

Таким образом, чем значительнее удельное сопротивление (чем хуже проводимость) магнитного материала, тем меньшими окажутся потери, вызываемые вихревыми токами.

Потери на вихревые токи пропорциональны частоте перемагничивающего магнитного поля в квадрате, поэтому в устройствах работающих на достаточно высоких частотах неприменимы магнитопроводы из материалов с высокой электрической проводимостью.

Оценить мощность потерь на вихревые токи для единицы массы магнитного материала (в Вт/кг) можно воспользовавшись формулой:

Так как количественно потери на вихревые токи зависят от квадрата частоты, то для работы в области высоких частот необходимо прежде всего принимать во внимание потери именно на вихревые токи.

Для минимизации этих потерь стараются использовать магнитопроводы с более высоким электрическим сопротивлением.

Чтобы сопротивление увеличить, сердечники набирают из множества взаимно изолированных листов ферромагнитного материала с достаточно высоким собственным удельным электрическим сопротивлением. 

Порошкообразный магнитный материал прессуют с диэлектриком, дабы частички магнитного материала оказались отделены друг от друга частичками диэлектрика. Так получают магнитодиэлектрики.

Еще вариант — применение ферритов — особой ферримагнитной керамики, отличающейся высоким удельным электрическим сопротивлением, близким к сопротивлению диэлектриков и полупроводников. Фактически ферриты являются твердыми растворами оксида железа с оксидами некоторых двухвалентных металлов, что можно описать обобщенной формулой:

С уменьшением толщины листа металлического материала, соответственно уменьшаются и потери вызываемые вихревыми токами. Но одновременно растут потери связанные с гистерезисом, ибо с утончением листа размер зерна также уменьшается, а значит растет коэрцитивная сила.

Практически с ростом частоты потери на вихревые токи увеличиваются сильнее нежели потери на гистерезис, в этом можно убедиться, сравнив две первые формулы. И на определенной частоте потери на вихревые токи начинают все более преобладать над потерями на гистерезис.

Это значит, что хотя толщина листа и зависит от рабочей частоты, тем не менее для каждой частоты должна быть подобрана определенная толщина листа, с которой будут минимизированы магнитные потери в целом.

Обычно магнитным материалам свойственно запаздывание изменения собственной магнитной индукции в зависимости от длительности действия перемагничивающего поля.

Данное явление вызывает потери, связанные с магнитным последействием (или так называемой магнитной вязкостью). Это связано с инерционностью процесса перемагничивания доменов. Чем короче длительность приложенного магнитного поля — тем длительнее запаздывание, а значит и магнитные потери, вызываемые «магнитной вязкостью», больше. Этот фактор необходимо учитывать при проектировании импульсных устройств с магнитными сердечниками.

Потери мощности от магнитного последействия невозможно рассчитать прямо, но их можно найти косвенно — как разность между полными удельными магнитными потерями и суммой потерь на вихревые токи и на магнитный гистерезис:

Итак, в процессе перемагничивания наблюдается некоторое отставание магнитной индукции от напряженности перемагничивающего магнитного поля по фазе. Причиной тому опять же вихревые токи, которые по закону Ленца препятствуют изменению магнитной индукции, гистерезисные явления и магнитное последействие.

Фазовый угол запаздывания называется углом магнитных потерь δм. В характеристиках динамических свойств магнитных материалов указывается такой параметр как тангенс угла магнитных потерь tgδм.

Здесь приведена схема замещения и векторная диаграмма для тороидальной катушки с сердечником из магнитного материала, где r1- эквивалентное сопротивление всех магнитных потерь:

Видно, что тангенс угла магнитных потерь обратно пропорционален добротности катушки. Возникающую при данных условиях индукцию Bm в перемагничиваемом материале можно разложить на две составляющие: первая — совпадает по фазе с напряженностью перемагничивающего поля, вторая — отстает от нее на 90 градусов.

Первая составляющая непосредственно связана с обратимыми процессами при перемагничивании, вторая — с необратимыми. Применяемые в цепях переменного тока, магнитные материалы характеризуются в связи с этим таким параметром как комплексная магнитная проницаемость:

Ранее ЭлектроВести писали, что две команды американских физиков разработали стратегию производства устройств для преобразования света в электричество с помощью органических полупроводников и «освобожденных» электронов.

По материалам: electrik.info.