Этот успех стал возможным благодаря специальной тонкопленочной технологии, в которой слои солнечных элементов сначала выращиваются на подложке (плёнке) из арсенида галлия, которая затем удаляется. На заднюю поверхность оставшейся полупроводниковой структуры, которая имеет толщину всего несколько микрометров, наносится проводящее зеркало с высокой отражающей способностью. Отражатель был оптически оптимизирован за счет комбинации керамики и серебра, а поглотитель ячейки был основан на арсениде галлия, легированном азотом, и арсениде алюминия-галлия p-типа (гетероструктура n-GaAs / p-AlGaAs).
Энергия лазера доставляется либо через воздух, либо через оптическое волокно в фотоэлектрический элемент, характеристики которого соответствуют мощности и длине волны монохроматического лазерного света. По сравнению с традиционной передачей энергии по медным проводам, системы «power by light» особенно полезны для приложений, которые требуют, например, гальванически изолированного источника питания, защиты от молнии или взрыва, электромагнитной совместимости или полностью беспроводной передачи энергии.
«Это впечатляющий результат, который показывает потенциал фотоэлектрических систем для промышленного применения, помимо производства солнечной энергии», — говорит профессор Андреас Бетт, директор института Fraunhofer ISE. Оптическая передача энергии имеет множество применений. Например, структурный мониторинг ветряных турбин; мониторинг высоковольтных линий, топливных датчиков в баках самолетов или пассивных оптических сетей; снабжение энергией имплантатов извне; или беспроводной источник питания для приложений в Интернете вещей.
Ранее сообщалось, что Meyer Burger открыл фабрики по выпуску солнечных элементов и модулей в ФРГ
Читайте самые интересные истории ЭлектроВестей в Telegram и Viber