RSS
Новости
3 октября 2019, 13:33
Ученые Австралии и Японии продолжают испытывать водородный компонент для последующей генерации чистой энергии
Ученые Австралии и Японии продолжают испытывать перспективный водородный компонент для последующей генерации чистой энергии.

Дело в том, что для стран Азии показатель прямого солнечного излучения не так высок, да и территория стран вроде Японии или Южной Кореи не позволяет развернуть огромные солнечные фермы. Поэтому водородная энергия должна поправить «зеленый» энергобаланс региона.

Ценность водорода заключается в том, что он может быть произведен в любой удобной точке планеты при помощи возобновляемых источников энергии (ВИЭ), может храниться и транспортироваться куда угодно для последующей генерации электроэнергии. Опираясь на водород, экономика любой страны может довольно быстро обезуглеродиться — вот главная причина заинтересованности Японии в водородных исследованиях.

В 2017 году правительство Японии обнародовало долгосрочный план по разработке и внедрению энергетической системы на базе водорода. Использование термохимических реакторов в солнечных регионах мира вроде Австралии — готовое решение для импорта водорода в Японию. Водородное топливо можно перевозить в танкерах так же, как сегодня транспортируют нефть и сжиженный газ.

«Для Австралии это было бы весьма выгодно, потому что Япония и Южная Корея не обладают собственными энергетическими ресурсами — они полагаются на импорт энергии», — отметил Уэс Стейн, директор термосолярной (солнечной) электростанции CSIRO.

Австралийцы давно экспортируют ископаемые энергоносители в Японию, поэтому логистические цепочки давным-давно продуманы. Транспортировка другого вида топлива ничего не изменит.

Ученые поясняют, что для получения «солнечного» водорода нужна температура более 1400 °C, это возможно при определенных лабораторных условиях. Как отмечает Сельван Беллан, доцент Ниигатского университета (Япония), нужно два шага, чтобы произвести водород, разделить его.

«Первым шагом является превращение CeO2 в CeO при температуре более 1400 °C. После этапа термического восстановления для восстановления оксида металла на следующем этапе водород будет получен путем гидролиза при температуре порядка 800 °C. Наши исследования нацелены на получение водорода с помощью этого двухэтапного процесса — с использованием оксида церия».

Напомним, что в Германии ученые научились добывать водород из сточных вод. Запатентованная технология Graforce называется «Plasma» - симбиоз из плазмы и электролиза.

Ранее ЭлектроВести писали, что консалтинговая компания Wood Mackenzie опубликовала прогноз мирового энергетического развития до 2040 года Energy Transition Outlook 2019. Энергетическая трансформация идёт слишком медленно.

Читайте самые интересные истории ЭлектроВестей в Telegram и Viber

По материалам: sunnik.com.ua
ELEKTROVESTI.NET экономят ваше время
Подпишитесь на важные новости энергетики!
Подпишитесь на ЭлектроВести в Твиттере
Самое читаемое